Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 55, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581034

RESUMO

A novel methylation class, "neuroepithelial tumor, with PLAGL1 fusion" (NET-PLAGL1), has recently been described, based on epigenetic features, as a supratentorial pediatric brain tumor with recurrent histopathological features suggesting an ependymal differentiation. Because of the recent identification of this neoplastic entity, few histopathological, radiological and clinical data are available. Herein, we present a detailed series of nine cases of PLAGL1-fused supratentorial tumors, reclassified from a series of supratentorial ependymomas, non-ZFTA/non-YAP1 fusion-positive and subependymomas of the young. This study included extensive clinical, radiological, histopathological, ultrastructural, immunohistochemical, genetic and epigenetic (DNA methylation profiling) data for characterization. An important aim of this work was to evaluate the sensitivity and specificity of a novel fluorescent in situ hybridization (FISH) targeting the PLAGL1 gene. Using histopathology, immunohistochemistry and electron microscopy, we confirmed the ependymal differentiation of this new neoplastic entity. Indeed, the cases histopathologically presented as "mixed subependymomas-ependymomas" with well-circumscribed tumors exhibiting a diffuse immunoreactivity for GFAP, without expression of Olig2 or SOX10. Ultrastructurally, they also harbored features reminiscent of ependymal differentiation, such as cilia. Different gene partners were fused with PLAGL1: FOXO1, EWSR1 and for the first time MAML2. The PLAGL1 FISH presented a 100% sensitivity and specificity according to RNA sequencing and DNA methylation profiling results. This cohort of supratentorial PLAGL1-fused tumors highlights: 1/ the ependymal cell origin of this new neoplastic entity; 2/ benefit of looking for a PLAGL1 fusion in supratentorial cases of non-ZFTA/non-YAP1 ependymomas; and 3/ the usefulness of PLAGL1 FISH.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Ependimoma , Glioma Subependimal , Neoplasias Supratentoriais , Criança , Humanos , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular , Neoplasias do Sistema Nervoso Central/genética , Ependimoma/patologia , Hibridização in Situ Fluorescente , Neoplasias Supratentoriais/patologia , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
2.
Acta Oncol ; 63: 83-94, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501768

RESUMO

BACKGROUND: Surveillance of incidence and survival of central nervous system tumors is essential to monitor disease burden and epidemiological changes, and to allocate health care resources. Here, we describe glioma incidence and survival trends by histopathology group, age, and sex in the Norwegian population. MATERIAL AND METHODS: We included patients with a histologically verified glioma reported to the Cancer Registry of Norway from 2002 to 2021 (N = 7,048). Population size and expected mortality were obtained from Statistics Norway. Cases were followed from diagnosis until death, emigration, or 31 December 2022, whichever came first. We calculated age-standardized incidence rates (ASIR) per 100,000 person-years and age-standardized relative survival (RS).  Results: The ASIR for histologically verified gliomas was 7.4 (95% CI: 7.3-7.6) and was higher for males (8.8; 95% CI: 8.5-9.1) than females (6.1; 95% CI: 5.9-6.4). Overall incidence was stable over time. Glioblastoma was the most frequent tumor entity (ASIR = 4.2; 95% CI: 4.1-4.4). Overall, glioma patients had a 1-year RS of 63.6% (95% CI: 62.5-64.8%), and a 5-year RS of 32.8% (95% CI: 31.6-33.9%). Females had slightly better survival than males. For most entities, 1- and 5-year RS improved over time (5-year RS for all gliomas 29.0% (2006) and 33.1% (2021), p < 0.001). Across all tumor types, the RS declined with increasing age at diagnosis. INTERPRETATION: The incidence of gliomas has been stable while patient survival has increased over the past 20 years in Norway. As gliomas represent a heterogeneous group of primary CNS tumors, regular reporting from cancer registries at the histopathology group level is important to monitor disease burden and allocate health care resources in a population.


Assuntos
Glioma , Masculino , Feminino , Humanos , Incidência , Estudos de Coortes , Glioma/epidemiologia , Sistema de Registros , Noruega/epidemiologia
4.
Neurooncol Pract ; 11(1): 36-45, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38222046

RESUMO

Background: Differentiating post-radiation MRI changes from progressive disease (PD) in glioblastoma (GBM) patients represents a major challenge. The clinical problem is two-sided; avoid termination of effective therapy in case of pseudoprogression (PsP) and continuation of ineffective therapy in case of PD. We retrospectively assessed the incidence, management, and prognostic impact of PsP and analyzed factors associated with PsP in a GBM patient cohort. Methods: Consecutive GBM patients diagnosed in the South-Eastern Norway Health Region from 2015 to 2018 who had received RT and follow-up MRI were included. Tumor, patient, and treatment characteristics were analyzed in relationship to re-evaluated MRI examinations at 3 and 6 months post-radiation using Response Assessment in Neuro-Oncology criteria. Results: A total of 284 patients were included in the study. PsP incidence 3 and 6 months post-radiation was 19.4% and 7.0%, respectively. In adjusted analyses, methylated O6-methylguanine-DNA methyltransferase (MGMT) promoter and the absence of neurological deterioration were associated with PsP at both 3 (p < .001 and p = .029, respectively) and 6 months (p = .045 and p = .034, respectively) post-radiation. For patients retrospectively assessed as PD 3 months post-radiation, there was no survival benefit of treatment change (p = .838). Conclusions: PsP incidence was similar to previous reports. In addition to the previously described correlation of methylated MGMT promoter with PsP, we also found that absence of neurological deterioration significantly correlated with PsP. Continuation of temozolomide courses did not seem to compromise survival for patients with PD at 3 months post-radiation; therefore, we recommend continuing adjuvant temozolomide courses in case of inconclusive MRI findings.

5.
Neuropathology ; 43(5): 385-390, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36754566

RESUMO

Molecular alterations nowadays play a crucial role in the diagnosis of brain tumors. Some of these alterations are associated with outcome and/or response to treatment, including sequence variants of isocitrate dehydrogenase (IDH) at position p.R132 or p.R172. Such IDH variants have so far been described in histone H3-wildtype primary brain tumors only in adult-type diffuse gliomas and are associated with a better outcome compared to their IDH-wildtype counterpart, the glioblastoma. Moreover, homozygous loss of CDKN2A and/or CDKN2B in IDH-mutant astrocytomas shortens the median overall survival regardless of histological features of malignancy. Such tumors are therefore considered to be aggressive and graded as WHO central nervous system (CNS) grade 4 lesions. The coexistence of an IDH-sequence variation and a BRAF p.V600E alteration has only rarely been described in diffuse astrocytomas. Due to the small number of cases, little is known about such neoplasms in terms of clinical behavior and response to treatment. Herein we describe the first case, to our knowledge, of an astrocytoma (CNS WHO grade 4), IDH-mutant, and BRAF p.V600E-mutant with homozygous deletion of CDKN2A. Pathologists should be aware that such an expression profile does exist even in WHO CNS grade 4 astrocytomas, IDH-mutant, and are encouraged to test for the BRAF p.V600E sequence variant as such an alteration may provide additional treatment options.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Isocitrato Desidrogenase/genética , Proteínas Proto-Oncogênicas B-raf/genética , Homozigoto , Mutação , Deleção de Sequência , Astrocitoma/patologia , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Organização Mundial da Saúde , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo
6.
Neuropathol Appl Neurobiol ; 48(7): e12847, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35977725

RESUMO

AIMS: Anaplastic ganglioglioma is a rare tumour, and diagnosis has been based on histological criteria. The 5th edition of the World Health Organization Classification of Tumours of the Central Nervous System (CNS WHO) does not list anaplastic ganglioglioma as a distinct diagnosis due to lack of molecular data in previous publications. We retrospectively compiled a cohort of 54 histologically diagnosed anaplastic gangliogliomas to explore whether the molecular profiles of these tumours represent a separate type or resolve into other entities. METHODS: Samples were subjected to histological review, desoxyribonucleic acid (DNA) methylation profiling and next-generation sequencing. Morphological and molecular data were summarised to an integrated diagnosis. RESULTS: The majority of tumours designated as anaplastic gangliogliomas resolved into other CNS WHO diagnoses, most commonly pleomorphic xanthoastrocytoma (16/54), glioblastoma, isocitrate dehydrogenase protein (IDH) wild type and diffuse paediatric-type high-grade glioma, H3 wild type and IDH wild type (11 and 2/54), followed by low-grade glial or glioneuronal tumours including pilocytic astrocytoma, dysembryoplastic neuroepithelial tumour and diffuse leptomeningeal glioneuronal tumour (5/54), IDH mutant astrocytoma (4/54) and others (6/54). A subset of tumours (10/54) was not assignable to a CNS WHO diagnosis, and common molecular profiles pointing to a separate entity were not evident. CONCLUSIONS: In summary, we show that tumours histologically diagnosed as anaplastic ganglioglioma comprise a wide spectrum of CNS WHO tumour types with different prognostic and therapeutic implications. We therefore suggest assigning this designation with caution and recommend comprehensive molecular workup.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Ganglioglioma , Glioma , Criança , Humanos , Ganglioglioma/patologia , Estudos Retrospectivos , Glioma/patologia , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias do Sistema Nervoso Central/patologia , Isocitrato Desidrogenase
7.
Front Oncol ; 12: 846674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965529

RESUMO

Cystic glioblastomas are aggressive primary brain tumors that may both destroy and displace the surrounding brain tissue as they grow. The mechanisms underlying these tumors' destructive effect could include exposure of brain tissue to tumor-derived cytokines, but quantitative cytokine data are lacking. Here, we provide quantitative data on leukocyte markers and cytokines in the cyst fluid from 21 cystic glioblastomas, which we compare to values in 13 brain abscess pus samples. The concentration of macrophage/microglia markers sCD163 and MCP-1 was higher in glioblastoma cyst fluid than in brain abscess pus; lymphocyte marker sCD25 was similar in cyst fluid and pus, whereas neutrophil marker myeloperoxidase was higher in pus. Median cytokine levels in glioblastoma cyst fluid were high (pg/mL): TNF-α: 32, IL-6: 1064, IL-8: 23585, tissue factor: 28, the chemokine CXCL1: 639. These values were not significantly different from values in pus, pointing to a highly pro-inflammatory glioblastoma environment. In contrast, levels of IFN-γ, IL-1ß, IL-2, IL-4, IL-10, IL-12, and IL-13 were higher in pus than in glioblastoma cyst fluid. Based on the quantitative data, we show for the first time that the concentrations of cytokines in glioblastoma cyst fluid correlate with blood leukocyte levels, suggesting an important interaction between glioblastomas and the circulation. Preoperative MRI of the cystic glioblastomas confirmed both destruction and displacement of brain tissue, but none of the cytokine levels correlated with degree of brain tissue displacement or peri-tumoral edema, as could be assessed by MRI. We conclude that cystic glioblastomas are highly pro-inflammatory environments that interact with the circulation and that they both displace and destroy brain tissue. These observations point to the need for neuroprotective strategies in glioblastoma therapy, which could include an anti-inflammatory approach.

9.
Neurooncol Adv ; 4(1): vdac077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733513

RESUMO

Background: The WHO Classification of Tumors of the Central Nervous System has undergone major restructuring. Molecularly defined diagnostic criteria were introduced in 2016 (revised 4th edition) and expanded in 2021 (5th edition) to incorporate further essential diagnostic molecular parameters. We investigated potential differences between specialists in perception of these molecularly defined subtypes for pediatric high-grade gliomas (pedHGG). Methods: We designed a 22-question survey studying the impact of the revised 4th edition of the WHO classification on pedHGG. Data were collected and statistically analyzed to examine the spectrum of viewpoints and possible differences between neuro-oncologists and neuropathologists. Results: 465 participants from 53 countries were included; 187 pediatric neuro-oncologists (40%), 160 neuropathologists (34%), and 118 additional experts (26%). Neuro-oncologists reported issues with the introduction of molecularly defined tumor types, as well as the abolishment or renaming of established tumor entities, while neuropathologists did not to the same extent. Both groups indicated less relevant or insufficient diagnostic definitions were available in 2016. Reported issues were classified and assessed in the 2021 WHO classification and a substantial improvement was perceived. However, issues of high clinical relevance remain to be addressed, including the definition of clinical phenotypes for diffuse intrinsic pontine glioma and gliomatosis cerebri. Conclusions: Within the WHO classification of pediatric brain tumors, such as pedHGG, rapid changes in molecular characterization have been introduced. This study highlights the ongoing need for cross talk between pathologist and oncologist to advance the classification of pedHGG subtypes and ensure biological relevance and clinical impact.

10.
Pediatr Blood Cancer ; 69(9): e29736, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35570402

RESUMO

BACKGROUND: An unexplained regional difference in survival was observed in previous publications on outcome for children treated for medulloblastoma and supratentorial primitive neuroectodermal tumor (CNS-PNET) in Norway. We aimed now to reevaluate and perform a retrospective molecular-based risk stratification of all embryonal brain tumors (excluding atypical teratoid rhabdoid tumors [ATRT]) in pediatric patients, who underwent surgery and treatment at Oslo University Hospital between 2005 and 2017. PROCEDURE: Specimens from all patients <20 years of age with initial diagnosis of medulloblastoma or CNS-PNET were reviewed. Molecular analyses comprised NanoString gene expression, molecular inversion probe profiling, Sanger sequencing, and 850K-methylation analysis. Whole chromosomal aberration signatures were assessed in standard-risk non-WNT/non-SHH medullobastomas for molecular risk stratification. RESULTS: We identified 53 non-ATRT embryonal tumors among which 33 were medulloblastomas. Molecular genetic parameters including whole chromosomal aberration signatures allowed classification of 17 medulloblastomas as molecular high risk. These patients had a significantly worse 5-year overall survival than the remaining 16 medulloblastoma patients (52.9% vs. 87.1% p = 0.036). Five patients in our cohort had tumors that are considered as new entities in the 2021 classification of tumors of the central nervous system. Five tumors were re-classified as nonembryonal tumors after review. CONCLUSION: Molecular-based risk stratification of standard-risk non-WNT/non-SHH medulloblastoma enabled superior identification of medulloblastomas with dismal prognosis. Our cohort demonstrated a significantly increased fraction of standard-risk non-WNT/non-SHH medulloblastoma with molecular high-risk profile compared to other studies, which might have contributed to previously reported unfavorable outcome data.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Neoplasias Cerebelares , Meduloblastoma , Tumores Neuroectodérmicos Primitivos , Tumor Rabdoide , Neoplasias Encefálicas/patologia , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/terapia , Criança , Aberrações Cromossômicas , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/terapia , Tumores Neuroectodérmicos Primitivos/patologia , Estudos Retrospectivos , Tumor Rabdoide/genética
11.
J Transl Med ; 20(1): 225, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568909

RESUMO

BACKGROUND: Matching treatment based on tumour molecular characteristics has revolutionized the treatment of some cancers and has given hope to many patients. Although personalized cancer care is an old concept, renewed attention has arisen due to recent advancements in cancer diagnostics including access to high-throughput sequencing of tumour tissue. Targeted therapies interfering with cancer specific pathways have been developed and approved for subgroups of patients. These drugs might just as well be efficient in other diagnostic subgroups, not investigated in pharma-led clinical studies, but their potential use on new indications is never explored due to limited number of patients. METHODS: In this national, investigator-initiated, prospective, open-label, non-randomized combined basket- and umbrella-trial, patients are enrolled in multiple parallel cohorts. Each cohort is defined by the patient's tumour type, molecular profile of the tumour, and study drug. Treatment outcome in each cohort is monitored by using a Simon two-stage-like 'admissible' monitoring plan to identify evidence of clinical activity. All drugs available in IMPRESS-Norway have regulatory approval and are funded by pharmaceutical companies. Molecular diagnostics are funded by the public health care system. DISCUSSION: Precision oncology means to stratify treatment based on specific patient characteristics and the molecular profile of the tumor. Use of targeted drugs is currently restricted to specific biomarker-defined subgroups of patients according to their market authorization. However, other cancer patients might also benefit of treatment with these drugs if the same biomarker is present. The emerging technologies in molecular diagnostics are now being implemented in Norway and it is publicly reimbursed, thus more cancer patients will have a more comprehensive genomic profiling of their tumour. Patients with actionable genomic alterations in their tumour may have the possibility to try precision cancer drugs through IMPRESS-Norway, if standard treatment is no longer an option, and the drugs are available in the study. This might benefit some patients. In addition, it is a good example of a public-private collaboration to establish a national infrastructure for precision oncology. Trial registrations EudraCT: 2020-004414-35, registered 02/19/2021; ClinicalTrial.gov: NCT04817956, registered 03/26/2021.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/uso terapêutico , Humanos , Oncologia , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , Estudos Prospectivos
12.
Neurooncol Adv ; 3(1): vdab149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34729487

RESUMO

BACKGROUND: Brain tumor surgery must balance the benefit of maximal resection against the risk of inflicting severe damage. The impact of increased resection is diagnosis-specific. However, the precise diagnosis is typically uncertain at surgery due to limitations of imaging and intraoperative histomorphological methods. Novel and accurate strategies for brain tumor classification are necessary to support personalized intraoperative neurosurgical treatment decisions. Here, we describe a fast and cost-efficient workflow for intraoperative classification of brain tumors based on DNA methylation profiles generated by low coverage nanopore sequencing and machine learning algorithms. METHODS: We evaluated 6 independent cohorts containing 105 patients, including 50 pediatric and 55 adult patients. Ultra-low coverage whole-genome sequencing was performed on nanopore flow cells. Data were analyzed using copy number variation and ad hoc random forest classifier for the genome-wide methylation-based classification of the tumor. RESULTS: Concordant classification was obtained between nanopore DNA methylation analysis and a full neuropathological evaluation in 93 of 105 (89%) cases. The analysis demonstrated correct diagnosis in 6/6 cases where frozen section evaluation was inconclusive. Results could be returned to the operating room at a median of 97 min (range 91-161 min). Precise classification of the tumor entity and subtype would have supported modification of the surgical strategy in 12 out of 20 patients evaluated intraoperatively. CONCLUSION: Intraoperative nanopore sequencing combined with machine learning diagnostics was robust, sensitive, and rapid. This strategy allowed DNA methylation-based classification of the tumor to be returned to the surgeon within a timeframe that supports intraoperative decision making.

13.
Acta Radiol Open ; 10(7): 20584601211036550, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34377543

RESUMO

Sarcoidosis is characterized by the presence of noncaseating granulomatous inflammation in the affected organs. Neurosarcoidosis denotes the involvement of the nervous system and can be either isolated or coexisting with extraneural systemic inflammation. The diagnosis of isolated neurosarcoidosis may be challenging due to unspecific symptoms and similar appearances with other disease processes. This report presents an uncommon case of intracranial sarcoidosis mimicking multiple meningiomas. Familiarity with the spectrum of magnetic resonance imaging findings in neurosarcoidosis is crucial to prevent interpretive errors which may in turn lead to an inappropriate diagnosis and treatment.

14.
Epilepsy Res ; 176: 106698, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246119

RESUMO

New onset temporal seizures are increasingly encountered in adult patients. Many of those fulfill diagnostic criteria for possible or definite limbic encephalitis (LE). LE is associated with autoantibodies (autoABs) against neuronal surface structures ('neuronal' autoABs), 'onconeuronal' or GAD65. AutoABs can emerge in a paraneoplastic setting. However, by far not all patients with possible/definite LE have an oncological history. AutoABs have also found to arise in the context of viral encephalitis. Rare associations between autoAB-positive LE and human herpes virus 6 (HHV-6) infection have been as well reported. Our present analysis was dedicated to learn about potentially different autoAB spectra and HHV-6 detection rates in adult-onset temporal seizure patients with possible LE and largely different time spans between first seizure events and referral to a tertiary epileptological center due to pharmacoresistent seizures. We scrutinized serum/CSF samples obtained from adults with 'early diagnosis' of possible LE (≤ 30 months after first seizure event; n = 94) versus a patient group with 'late diagnosis' of possible LE (≥ 97 months; n = 45) for the presence of autoABs and HHV-6 DNA. AutoABs were detected in CSF and/or serum samples (n = 20) in 21.3 % of the early diagnosis patients with the highest abundance of anti-LGI1 (n = 8), significantly more frequent than in the late diagnosis group (autoAB positive: n = 4 (8.9 %); *p < 0.05, Fisher's Exact Test). Quantitative PCR revealed viral HHV-6 DNA in only one serum sample of the early diagnosis cohort but no evidence in corresponding CSF samples or in any sample of the late diagnosis group. The present data demonstrate a higher incidence of distinct autoABs in adults with early diagnosis of possible LE. The distinct spectra of autoABs have to be taken into account in the differential diagnosis of possible LE patients with short versus more sustained duration of temporal seizure activity.


Assuntos
Herpesvirus Humano 6 , Encefalite Límbica , Adulto , Autoanticorpos , Diagnóstico Tardio , Humanos , Encefalite Límbica/diagnóstico , Convulsões/diagnóstico
15.
Epilepsia ; 62(6): 1416-1428, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949696

RESUMO

OBJECTIVE: Focal cortical dysplasia (FCD) is a major cause of difficult-to-treat epilepsy in children and young adults, and the diagnosis is currently based on microscopic review of surgical brain tissue using the International League Against Epilepsy classification scheme of 2011. We developed an iterative histopathological agreement trial with genetic testing to identify areas of diagnostic challenges in this widely used classification scheme. METHODS: Four web-based digital pathology trials were completed by 20 neuropathologists from 15 countries using a consecutive series of 196 surgical tissue blocks obtained from 22 epilepsy patients at a single center. Five independent genetic laboratories performed screening or validation sequencing of FCD-relevant genes in paired brain and blood samples from the same 22 epilepsy patients. RESULTS: Histopathology agreement based solely on hematoxylin and eosin stainings was low in Round 1, and gradually increased by adding a panel of immunostainings in Round 2 and the Delphi consensus method in Round 3. Interobserver agreement was good in Round 4 (kappa = .65), when the results of genetic tests were disclosed, namely, MTOR, AKT3, and SLC35A2 brain somatic mutations in five cases and germline mutations in DEPDC5 and NPRL3 in two cases. SIGNIFICANCE: The diagnoses of FCD 1 and 3 subtypes remained most challenging and were often difficult to differentiate from a normal homotypic or heterotypic cortical architecture. Immunohistochemistry was helpful, however, to confirm the diagnosis of FCD or no lesion. We observed a genotype-phenotype association for brain somatic mutations in SLC35A2 in two cases with mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Our results suggest that the current FCD classification should recognize a panel of immunohistochemical stainings for a better histopathological workup and definition of FCD subtypes. We also propose adding the level of genetic findings to obtain a comprehensive, reliable, and integrative genotype-phenotype diagnosis in the near future.


Assuntos
Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/patologia , Adolescente , Adulto , Idade de Início , Diversidade de Anticorpos , Encéfalo/patologia , Criança , Pré-Escolar , Técnica Delfos , Feminino , Genótipo , Humanos , Imuno-Histoquímica , Lactente , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/cirurgia , Pessoa de Meia-Idade , Mutação/genética , Procedimentos Neurocirúrgicos , Variações Dependentes do Observador , Fenótipo , Convulsões/etiologia , Adulto Jovem
16.
Epilepsia ; 61(3): 421-432, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32080846

RESUMO

OBJECTIVE: The microscopic review of hematoxylin-eosin-stained images of focal cortical dysplasia type IIb and cortical tuber of tuberous sclerosis complex remains challenging. Both entities are distinct subtypes of human malformations of cortical development that share histopathological features consisting of neuronal dyslamination with dysmorphic neurons and balloon cells. We trained a convolutional neural network (CNN) to classify both entities and visualize the results. Additionally, we propose a new Web-based deep learning application as proof of concept of how deep learning could enter the pathologic routine. METHODS: A digital processing pipeline was developed for a series of 56 cases of focal cortical dysplasia type IIb and cortical tuber of tuberous sclerosis complex to obtain 4000 regions of interest and 200 000 subsamples with different zoom and rotation angles to train a neural network. Guided gradient-weighted class activation maps (Guided Grad-CAMs) were generated to visualize morphological features used by the CNN to distinguish both entities. RESULTS: Our best-performing network achieved 91% accuracy and 0.88 area under the receiver operating characteristic curve at the tile level for an unseen test set. Novel histopathologic patterns were found through the visualized Guided Grad-CAMs. These patterns were assembled into a classification score to augment decision-making in routine histopathology workup. This score was successfully validated by 11 expert neuropathologists and 12 nonexperts, boosting nonexperts to expert level performance. SIGNIFICANCE: Our newly developed Web application combines the visualization of whole slide images with the possibility of deep learning-aided classification between focal cortical dysplasia IIb and tuberous sclerosis complex. This approach will help to introduce deep learning applications and visualization for the histopathologic diagnosis of rare and difficult-to-classify brain lesions.


Assuntos
Córtex Cerebral/patologia , Aprendizado Profundo , Epilepsia/patologia , Malformações do Desenvolvimento Cortical do Grupo I/patologia , Neurônios/patologia , Esclerose Tuberosa/patologia , Algoritmos , Área Sob a Curva , Diagnóstico por Computador , Epilepsia/diagnóstico , Humanos , Internet , Malformações do Desenvolvimento Cortical do Grupo I/diagnóstico , Redes Neurais de Computação , Neuropatologia , Estudo de Prova de Conceito , Curva ROC , Reprodutibilidade dos Testes , Esclerose Tuberosa/diagnóstico
17.
Acta Neurochir (Wien) ; 162(4): 845-852, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31907611

RESUMO

OBJECTIVE: The aim was to study the prevalence of secondary adrenal insufficiency before and after surgery for non-functioning pituitary adenomas, as well as determine risk factors for developing secondary adrenal insufficiency. A secondary aim was to determine adequate p-cortisol response to a 1-µg Short Synacthen Test after surgery. DESIGN: Longitudinal cohort study. METHODS: One hundred seventeen patients (52/65 females/males, age 59 years) undergoing primary surgery for clinically non-functioning pituitary adenomas were included. P-cortisol was measured in morning blood samples. Three months after surgery, a Short Synacthen Test was performed. RESULTS: All tumours were macroadenomas (mean size 26.9 mm, range 13-61 mm). The surgical indications were visual impairment (93), tumour growth (16), pituitary apoplexy (6) and headache (2). Before surgery, 17% of the patients had secondary adrenal insufficiency (SAI), decreasing to 15% 3 months postoperatively. Risk of SAI was increased in patients operated for pituitary apoplexy (p < 0.001), while age, sex, tumour size and complication rate were not different from the remaining cohort. Three months after surgery, all patients with baseline p-cortisol ≥ 172 nmol/l (6.2 µg/dl) and peak p-cortisol during Short Synacthen Test ≥ 320 nmol/l (11.6 µg/dl) tapered cortisone unproblematically. In patients with intact hypothalamic-pituitary-adrenal axis, p-cortisol peaked < 500 nmol/l (18.1 µg/dl) during Short Synacthen Test in 48% of patient. CONCLUSION: Pituitary surgery is safe and transsphenoidal surgery rarely causes new SAI. Relying solely on morning p-cortisol for diagnosing secondary adrenal insufficiency gives false positives and the Short Synacthen Test remains useful. A peak p-cortisol ≥ 320 during (11.6 µg/dl) Short Synacthen Test indicates a sufficient response, while < 309 nmol/l (11.2 µg/dl) indicates secondary adrenal insufficiency.


Assuntos
Adenoma/cirurgia , Insuficiência Adrenal/diagnóstico , Hidrocortisona/sangue , Neoplasias Hipofisárias/cirurgia , Adenoma/sangue , Adenoma/fisiopatologia , Insuficiência Adrenal/sangue , Adulto , Idoso , Testes Diagnósticos de Rotina , Feminino , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/sangue , Neoplasias Hipofisárias/fisiopatologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Período Pós-Operatório
18.
J Transl Med ; 17(1): 96, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894200

RESUMO

BACKGROUND: Molecularly targeted therapies using receptor inhibitors, small molecules or monoclonal antibodies are routinely applied in oncology. Verification of target expression should be mandatory prior to initiation of therapy, yet, determining the expression status is most challenging in recurrent glioblastoma (GBM) where most patients are not eligible for second-line surgery. Because very little is known on the consistency of expression along the clinical course we here explored common drug targets in paired primary vs. recurrent GBM tissue samples. METHODS: Paired surgical tissue samples were derived from a homogeneously treated cohort of 34 GBM patients. All patients received radiotherapy and temozolomide chemotherapy. Verification of common drug targets included immunohistological analysis of PDGFR-ß, FGFR-2, FGFR-3, and mTOR-pathway component (phospho-mTORSer2448) as well as molecular, MLPA-based analysis of specific copy number aberrations at the gene loci of ALK, PDGFRA, VEGFR2/KDR, EGFR, MET, and FGFR1. RESULTS: Paired tumor tissue exhibited significant changes of expression in 9 of the 10 investigated druggable targets (90%). Only one target (FGFR1) was found "unchanged", since dissimilar expression was observed in only one of the 34 paired tumor tissue samples. All other targets were variably expressed with an 18-56% discordance rate between primary and recurrent tissue. CONCLUSIONS: The high incidence of dissimilar target expression status in clinical samples from primary vs. recurrent GBM suggests clinically relevant heterogeneity along the course of disease. Molecular target expression, as determined at primary diagnosis, may not necessarily present rational treatment clues for the clinical care of recurrent GBM. Further studies need to analyze the therapeutic impact of longitudinal heterogeneity in GBM.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/terapia , Heterogeneidade Genética , Glioblastoma/terapia , Terapia de Alvo Molecular/métodos , Recidiva Local de Neoplasia/terapia , Adulto , Idoso , Antineoplásicos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Progressão da Doença , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Feminino , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular/tendências , Recidiva Local de Neoplasia/genética , Planejamento de Assistência ao Paciente , Estudos Retrospectivos , Adulto Jovem
19.
Acta Neurochir (Wien) ; 161(2): 343-349, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30652202

RESUMO

BACKGROUND: Hemangioblastomas (HB) are benign tumors of the central nervous system (CNS) that can appear sporadic or as part of von Hippel-Lindau (VHL) disease. It is often curable with surgical resection, but upon relapse, the disease exhibits a treatment-refractory course. CASE REPORT: A patient treated for sporadic cerebellar HB relapsed 12 years post-surgery. She developed disseminated disease throughout the CNS, including leptomeningeal manifestations. Repeat surgery and craniospinal radiation therapy were unsuccessful. CONCLUSION: This case is in line with previous publications on disseminated non-VHL HB. Available treatment options are inefficient, emphasizing the need for improved understanding of HB biology to identify therapeutic targets.


Assuntos
Neoplasias Cerebelares/cirurgia , Hemangioblastoma/cirurgia , Doença de von Hippel-Lindau/patologia , Adulto , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/radioterapia , Diagnóstico Diferencial , Feminino , Hemangioblastoma/patologia , Hemangioblastoma/radioterapia , Humanos , Metástase Neoplásica , Doença de von Hippel-Lindau/genética
20.
Cancer Genomics Proteomics ; 15(5): 379-385, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30194078

RESUMO

BACKGROUND: Methylation of the O6-methylguanine-DNA methyltransferase (MGMT) gene promoter is a well-established predictor of response to the DNA-alkylating agent temozolomide in patients with glioblastoma. MATERIALS AND METHODS: Pyrosequencing analysis was used to determine the MGMT promoter methylation status in 61 meningiomas, to clarify whether it might have a predictive role. RESULTS: Only two tumors (3%) had a mean methylation frequency higher than the cut-off value of 10% for the four CpG sites examined. CONCLUSION: The methylation of the MGMT promoter is uncommon, or occurs at a low frequency in meningiomas. There is no convincing rationale to test such tumors for their MGMT methylation status in a clinical setting.


Assuntos
Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Meningioma/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Meningioma/patologia , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...